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Magnetohydrodynamic flow in rectangular ducts 

By J. C. R. HUNT 
Central Electricity Research Laboratories, Leatherhead* 

(Received 27 July 1964) 

The paper presents an analysis of laminar motion of a conducting liquid in a 
rectangular duct under a uniform transverse magnetic field. The effects of the 
duct having conducting walls are investigated. Exact solutions are obtained 
for two cases, (i) perfectly conducting walls perpendicular to the field and thin 
walls of arbitrary conductivity parallel to the field, and (ii) non-conducting walls 
parallel to the field and thin walls of arbitrary conductivity perpendicular to 
the field. 

The boundary layers on the walls parallel to the field are studied in case (i) 
and it is found that at high Hartmann number ( M ) ,  large positive and negative 
velocities of order NV, are induced, where V ,  is the velocity of the core. It is 
suggested that contrary to previous assumptions the magnetic field may in 
some cases have a destabilizing effect on flow in ducts. 

1. Introduction 
The design of magnetohydrodynamic generators, pumps and accelerators 

requires an understanding of the flows of conducting fluids in rectangular 
ducts with finitely conducting walls under transverse magnetic fields. At the 
present time even the case of uniformly conducting incompressible laminar 
flow with no variation in the flow direction has not been fully analyzed. In this 
paper we confine ourselves to problems of this type alone. The main character- 
istics of such flows that need to be known are: 

(1) the volumetric flow rate q through the duct for given pressure gradient 
and magnetic field; 

(2) the potential difference between electrodes placed in the walls; 
(3) the stability of the flow. 
Three exact sOlutions have been found for incompressible laminar flows 

(1) rectangular ducts with non-conducting walls and the field perpendicular 

(2) rectangular ducts with perfectly conducting walls (Chang & Lundgren 

(3) circular pipes with non-conducting walls (e.g. Gold 1962 and Fabri & 

Approximate methods have been developed for the physically interesting 

in ducts with transverse magnetic fields: 

to one side (Shercliff 1953); 

1961; Uflyand 1961); 

Siestrunck 1960). 
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case of flows at high Hartmann number, M .  For a rectangular duct with non- 
conducting walls Shercliff (1953) developed an approximate method for analysing 
the boundary layers on the walls parallel to the field and thence deduced q 
and the potential distributions round the walls. By ignoring the reduction in 
flow rate due to the boundary layers, he then found a f i s t  approximation for q 
in a duct of any cross-section, which was later extended to the case of ducts 
with thin walls of any conductivity by Chang & Lundgren (1961). Sakao (1962) 
used a variational method to find a second-order approximation for q in circular 
pipes. 

In  finding the overall features of the flow at high M ,  approximate methods 
are often best since the exact solutions are in the form of infinite series whose 
rate of convergence decreases for higher values of M .  It is possible, however, to 
compare the expressions for q at high M obtained by the two methods. The only 
case hitherto of the approximate expression for q at high M agreeing with that 
derived from the exact solution is that of flow in a rectangular duct with non- 
conducting walls (Williams 1963). In  the same paper, using some lengthy mathe- 
matics, Williams deduced an expression for q at high M from Chang & Lund- 
gren’s result for flow in a rectangular channel with perfectly conducting walls. 
The asymptotic form of the exact solution for circular pipe flow at high M 
provides an expression for q which differs from Shercliff’s ( 1 9 6 2 ~ )  and Sakao’s 
( I  962) approximate expressions by a term due to the velocity defect in the bound- 
ary layers. 

No satisfactory approximate or exact solutions exist for the most important 
practical case of a rectangular duct with conducting walls parallel to the field 
and non-conducting walls perpendicular to the field. Some observations on this 
problem have been made by Shercliff (1962b, page 16) and by Braginskii (1960). 
Grinberg (1961, 1962) has attempted an exact analysis using a Green’s function 
method but his result is incomplete. We have not been able to solve this problem, 
but we have solved exactly two other classes of problem of flow in a rectangular 
duct, in which the duct has (i) perfectly conducting walls at right angles to the 
field and thin walls of arbitrary conductivity parallel to the field, and (ii) non- 
conducting walls parallel to the field and thin walls of arbitrary conductivity 
perpendicular to the field. These exact solutions are in the form of infinite 
series whose rate of convergence increases for higher values of M .  In  this paper 
we examine the asymptotic form of these solutions at  high M and draw some 
interesting physical conclusions, the main one being that a magnetic field may 
have a destabilizing influence on the flow in a duct. 

2. Formulation of the problem 
We consider the steady flow of an incompressible conducting fluid driven by a 

pressure gradient along a rectangular duct under an imposed transverse magnetic 
field. We assume that the walls of the duct are thin and finitely conducting. 
We postulate no secondary flow and no variation in duct cross-section or 
magnetic field. Consequently all conditions except pressure are constant along 
the duct. 
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Relative to the axes defined in figure 1, the equations describing such mag- 
netohydrodynamic duct flows are: 

j ,  = 4 - aqWx - v,Bo), j, = c( - ~ W Y ) ,  (1) 

(2) 

j ,  = aH,lay, j ,  = -aH,/ax, (3) 

aj,/ax + aj,/ay = 0, 

and (4) 

jx andj, are the current components; q5 is the electric potential; H, is the induced 
field which may also be considered as a current stream function; B, is the flux 
density of the imposed magnetic field; v, is the velocity; cr,q,ap/az are con- 
ductivity, viscosity and pressure gradient respectively. Let 2a, and 2b be the 
lengths of the sides of the channel (see figure 1) .  

B" 

1 4- 4 

FIGURE 1. Cross-section of a rectangular duct with magnetic field in y-direction. 
The walls A A  lie at x = b and BB at y = +a. 

The equations are usually re-written to give two coupled second-order partial 
differential equations in H, and v,, 

and 

If w, and H, are normalized in terms of (ap/&), a, r and 9, (5 )  and (6) become 

a2V a2V aH 
--+-++-=-1, a p  a72 a7 

and 

where 

(7) 

M = aBo(u/+)*; E = x / a ;  7 = y / a .  
37-2 
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Also let and I = b/a. 

We follow Shercliff (1956) in the specification of boundary conditions on H 
at a thin bounding wall. If aH/& is the normalized inward normal gradient of H 
at the wall, the condition satisfied by H at the wall is 

aH/an = aaH/aww, 

where a;, is the conductivity of the wall and w its thickness (w <a).  
If d = a;w/ua, the boundary condition for H is 

aH/an = H/d. ( 9) 

The boundary condition on V ,  of course, is that it  should vanish at the walls. 
In  §§3 and 4 we consider the following two cases, defined with reference to 

figure 1 : 

case I rectangular duct with walls BB perfectly conducting and walls A A  
of arbitrary conductivity; 

case11 rectangular duct with walls A A  non-conducting and walls BB of 
arbitrary conductivity. 

3. Case I 

arbitrary conductivity dA. The boundary conditions on V and H are: 

and at [ =  L-1, V = 0 and aH/a[= THld,. 

as Fourier series in q, with the coefficients functions of E,  

In  this case walls BB are perfectly conducting, d, = 00, and walls AA have 

(10) } 
at y =  + 1 ,  V = O  and aH/aq=O, 

We can satisfy the boundary conditions on q = & 1 by expressing V and H 

m m m 

V = I; vj(k)cosajq; H = hi([)sinajq; 1 = C ajcosajq, 

where aj = (j + $) T and uj = 2( - l)j/aj. Substituting these expansions for V 
and H into (7) and (8) leads to two ordinary differential equations for vj and It,, 

j = O  j = O  j = O  

and 

v'!-a2v.+Ma 3 3 3  j j  h = -a j ,  
hi-a,2hj-Maivj = 0. 

The solutions of these equations which satisfy the boundary conditions on 
[ = k 1 are 

( [ 1 - i M / a j ]  cosh r2j I + d, r2* sinh r2i I )  cosh rU [ 

Ki 
- ([l +iM/a j ]  coshrljl +d,rUsinhrliI) coshr,i[ 

a .  2M ([i+ M / a j ]  coshr2jl +id,r2jsinhr2jZ)coshrlj~ 
Ki 

h.  = f 
a , 2 + M 2 [ - ( q ) +  Ki 

- ([i - &.?/aj] cosh rIj I + idArli sinh rli I )  cosh r2&] , ( 12) 

Ki 
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r l f ,  rzi = (a; k iMaf)* 

Kf = 2 coshrljl coshrzfZ+d,[rzfsinhr,fZcoshrlfl +r,,sinhrijl coshr,jI?]. 

581 

where 
and 

Now rIi and rzj  may be split into their real and imaginary parts, namely, 

rlf ,  pzj = Pf k iy,, 
where pj,yi = (&a#[ kaf+(a;+M2)*]*. 
Hence 

The final result for V and H is 

Kf = cosh 2Pf 1 + cos 2 yi I? + dA(Pf sinh 2Pf I? - yf sin 2 yf I ) .  

where Ci(() = cosy,(Z-~) cosh/3#+5) + c ~ s y , ( Z + ~ ) c o s h ~ ~ ( Z - ~ ) ,  
D&) = sin yj(l  - E) sinhPj(Z + 6 )  + sin y,(Z + [) sinhPf(Z - E ) ,  
E&) = cosy,(Z-E)sinhPf(Z+E) +cosyf(l+E)sinhPi(l-~), 
l $ ( . ( g )  = sinyj(Z-t) cosh/3#+t) +siny,(Z+C) coshPf(Z-E). 

If the non-dimensional volumetric flow rate, Q ,  is defined by 

then, from (17), 

m (Pi - M y f / a f )  sinh 2Pfl + (yi + MP,/aj) sin 2yfl  
(a; + Y;) Kf 

[I- 
Q = zo a;(a; + ~ 2 )  

1. (15) 
UjdA( COSh 2Pj I? - COS 2Pj 1) - 

(a; + M2)* K j  

Note that the terms independent of 5 in the expressions for V and H are the 
Fourier expansions of the Hartmann solution and also that, as d, -+ m, the 
solutions become identical to those obtained for rectangular ducts with perfectly 
conducting walls by Uflyand (1961) and Chang & Lundgren (1961). 

At high Hartmann numbers the fluid tends to move at a constant velocity, the 
core velocity, in the centre of the duct with the velocity gradients confined to 
narrow Hartmann layers on the walls BB. If the non-dimensional core velocity 
is V,, then V ,  N l / M z  as M --f co. The current density is also constant in the core. 
The Hartmann layers are well understood, but the boundary layers on the walls 
A A  are less well understood and need examination. 

We consider the boundary layer on the wall 6 = - I? at high Hartmann number 
and make the following approximations: 

as M-+co, ,df,yf N ( & a f M ) * ( l + O ( l / M )  ...) N hf, where hf = (8afN)*, 

and hence K~ N ~ [ e x p { 2 ( & a j ~ ) * ~ } ]  (1 +dA(&afM) t )  (1 +0(1/M)) - exp Q[(2hjZ) (1 + d, 441. 
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For clarity we take the two cases of dA = 0 and dA = 00 and consider the V ,  H ,  
and @ profiles in the boundary layer. If g' = 5 + 1 and @ = 0 at q = k 1, then 
for d ,  = 0, as M + 00, 

&nd for dA =a, as M + 00, 

In  contrast with the exact solutions for rectangular and circular pipes with 
non-conducting walls, the higher terms in these series decrease exponentially 
and therefore it is a good approximation to consider the first few terms only. 
Hence we see that the V ,  H ,  and boundary layer profiles approximately have 
the form of exponentially damped sine waves, the thickness of the layers being 
O(M-*).  In  figures 2 and 3 velocity profiles when d A  = 0 are plotted for various 
values of 7 at M = 100 and for various values of M at q = 0. In  figure 4, the 
velocity profiles when d ,  = co are plotted for various values of q at arbitrary 
M y  provided M $ 1. Here the abscissa M*g provides a universal plot, when 
M 9 1. Note that in all cases V/V, + 1 as E' + co. 

The dramatic effect on the flow of varying the conductivity of the walls 
A A  is seen by comparing figures 3 and 4. When dA = 00 (figure 4) the maximum 
velocity in the boundary layer A is greater than the core velocity though of the 
same order; but when dA = 0 (figure 31, the maximum velocity is O(M)V, and 
the minimum velocity is negative provided M is high enough. We can deduce 
from (16) that the maximum velocity tends to 0.25 M& as M + 00, while the 
minimum velocity becomes locally negative for M > 89 and tends to - 0.01 1 MV, 
as M + co. The physical reason for the effect on the flow of varying dA when 
M $ 1 may be seen from equation (13) which shows that the form of the velocity 
profile depends on dAM*, the ratio of the conductance of the wall to that of the 
boundary layer on the wall A.  Thus when dA M i  $ 1 the currents return to the 
walls BB through the walls AA and when dA M* 4 1 the currents return to the 
walls BB through the boundary layers on walls AA. These effects are shown in 
figures 5a and b.  In  the first case the j x B drag force remains almost as high in the 



F
IG

U
R

E
 

2.
 C

as
e 
I:

 d
A

 =
 0

, M
 =

 1
00

. 
G

ra
ph

 o
f 

V
/V

, a
g

ai
n

st
 

5' 
in

 t
h

e 
bo

un
da

ry
 l

ay
er

 o
n 

E 
=

 -I
 f

or
 v

ar
io

us
 v

al
ue

s 
of

 7
. 

20
0 

- 

15
0 

g 
10

0 

50
 1 .o

 
7 

F
IG

U
R

E
 

3.
 I

: d
, 

=
 0

. 
G

ra
ph

 o
f 

V
/V

, a
g

ai
n

st
 J

M
F

 a
t 7

 =
 0

 in
 

th
e 

bo
un

da
ry

 l
ay

er
 o

n 
6 

=
 -

I 
fo

r 
va

ri
ou

s 
va

lu
es

 o
f 

M
( $

 1
). 



584 J .  C. R. Hunt 

boundary layer as it is in the core and in the second case the j x B drag force 
decreases to zero at the walls, which explains why the velocities in the boundary 
layer are much less when dA = 00 than when dA = 0. The reason for the large 
positive and negative velocities when dA = 0 is difficult to explain simply, but 
it appears that relative to its value in the core, the j x B force increases at the 
outer edge of the boundary layer, where the negative velocity occurs, before i t  
decreases near the wall, where the large positive velocities occur. 

1.4 

1.2 

1.0 

0.8 

K 
P 

0.6 

0.4 

0.2 

M + e  
FIGURE 4. Case I: d, = 00. Graph of V/V, against J M e  in the boundary layer at 

6 = - 1  for various values of 7 at any value of M ,  provided M S 1. 

Figures 2 and 4 show how little variation in velocity there is in the 7-direction 
as compared with the 5' direction which is to be expected since the magnetic 
field tends to damp only the vorticity perpendicular to it. 

Williams has worked out an asymptotic expansion for Q when dA =a as 
M -+ 00 in terms of l/M. It is possible to use a simpler method than he used to 
derive the same result and this same method may also be used for any value of d,. 

We consider the expression for Q in equation (15) as M + co and make the 
same approximations as in equations (16) to (21). As M -+ co, My,/aj 2: Mhj/ai 
and = A,, where hi N (&aj M)*.  Hence for low values of j, such that ai 3- M ,  
Myj/a j  3- pi. Also, as M + 00, cosh 2/34 21 sinh2Pj1 21 &exp(21h,) and hence 
cosh 2Pil 3- cos 2/3,l and sinh 2Pj l  3- sin 2yjZ. Therefore from equation (15), 
a s M - t a  
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and hence, 

The first term in this expression represents the velocity flux due to Hartmann 
flow between the planes r,~ = 1, while the second term is the change due to the 
boundary layers on the walls AA. Note that the form of the second term depends 

Boundary - 
layer 

Boundary 
layer 

(5) 

FIGURE 5(a). Cross-section of the duct when dA = 03 and & = 03 ( M  % 1). (Not to 
scale.) ( b )  Cross-section of the duct when dA = 0 and dB = cc ( M  1). (Not to scale.) 

on the value of dA/H*, the ratio of the conductance of the wall to that of the 
boundary layer. If d, = 00, 

and summing the series leads to 
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Hence the mean velocitv 

In  the exact expression derived by Williams the coefficient of the third term was 
2.43. 

Hence the mean velocity 

These results further demonstrate the interesting physical effects due to the 
conducting walls. From (23) we see that the velocity deficiency in the boundary 
layers on A A ,  i.e. 

is O(M-%),  when all the walls are perfectly conducting, i.e. dA = co. This is less 
than that in the case of the rectangular duct with non-conducting walls where 
it is O(M-f)  (Shercliff 1953). The reduced velocity deficiency is due to the velocity 
in the boundary layers showing an overshoot; relative to its value in the core 
the velocity first decreases, then increases above its value in the core, and finally 
decreases to zero at the wall. In  fact there are an infinite number of fluctuations 
in the velocity profile between the overshoot, just referred to, and the core, but 
they are sufficiently small for us to ignore them (see figure 4). Note that in both 
these cases the thickness of the boundary layers is O(M-4).  

When dA = 0 the velocity ‘deficiency’, as defined above, is negative and we 
find that for a reasonably square duct (a/b 9 M-9) most of the flow (equation (24)) 
is in the boundary layers on AA. If the boundary layer has thickness O(M-9) 
and the velocity in the boundary layer is O(MC) = O(M-l )  then the velocity 
flux through the boundary layer is O(M-3) as compared with O(M-2)  for the total 
velocity flux in the core. A practical consequence of this would be that, whatever 
the value of dA, for a given pressure gradient a system of thin insulating baffles 
placed parallel to A A  at a distance O(aM-4) apart would promote a greater 
volume flow rate by creating more boundary layers. The explanation is that the 
dominant retarding force on the core flow is electro-magnetic rather than viscous 
and the baffles will reduce the currents and hence also the electromagnetic retard- 
ing force. Provided the baffles are a t  least O(aM-))  apart, the decrease in electro- 
magnetic drag will be greater than the increase in viscous drag. 

4. Case 11 

conductivity, dB. The boundary conditions on V and H are 

and at f ; =  & I ,  V = 0 ,  H = O .  

In  this case walls A A  are non-conducting, d A  = 0, and walls BB have arbitrary 

(25 
at 7 = 1, V = 0, aHpT = T Hld,, 
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We satisfy the boundary conditions on 5 = f 1 by expressing V and H as 
Fourier series in 6, with coefficients functions of 7, 

m m m 

v =  2 vk(r)cosak[, H =  hk(q)cosak[, 1 = c akcoSgk5, 
k=O k=O k=O 

where 
?7 2( - l ) k  

ak = (k+&)- and a k  = 
1 

Substituting these values for V and H into (7) and (8) again leads to two 
ordinary differential equations for vk and hk 

VE-a;Vk+Mh; = - a k ,  

b”,aibk+MV; = 0. 

The solutions of these equations which satisfy the boundary conditions (26) 
involve some formidable algebra. The results are 

1-  
O0 

k=O 

2( - l ) k  COB a& 

la$ 
( 1 + tanh r2k/d~ r2k) cash r l k  7 [ (COSh Tlk) (H2  + 4a;)*/r2k + sinh (r lk  + r2k)/d~r2kcoshr2k 

v =  I: 

H =  c 2(-1)%osak5[( (1 + tanh rZk/dBr2k) sinh rlk7 
k=O la; cash r l k )  (M2 + 4a;)*/r,k f sinh (Tlk + r2k)/d~r2kCOShrlk 

(1 -k t&nh rlk/dBrlk) sinh r2k7 

(coshr,,) (M2 + kt;)*/Tlk + sinh (r lk  + r2,)/d~r1kCOShTlk - -----I, (27) 

where rlk, r2k = $( f M + {M2 + 44}*). 
When dB = 0 then all the walls are non-conducting which is the case analyzed 

by Shercliff (1953). Putting dB = 0 in the above formulae and adding V to H 
gives Shercliff’s result (equation ( 15) in his paper). 

When dB = 00 the duct is the same as that analyzed in 53 when dA = 0. It 
would be desirable to check that the two solutions were the same but this proves 
difficult, since to examine the above solutions near [ = & 1 the higher harmonics 
in the expansions of V and H have to be considered. It would be easier to check 
that the expressions for Q derived from the two solutions are the same. Using 
(26), when dB = 00, gives 

- rlk tanh T2k/r21t ( M 2  + 4a;)*]. (28) 

We may expand this expression in terms of 1/M as M + 00, using the methods of 
Williams (1963) and it is easily seen that the leading term is O(M-*) in agreement 
with the previous result (24). The significance of this term has already been 
discussed in 0 3. 

From (26) we may see that V and Q depend on dB M, the ratio of the conduc- 
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tance of the walls BB to that of the boundary layers on BB. Decreasing dB M 
makes the current induced in the core return through the Hartmann layers on 
BB and hence reduces the electro-magnetic drag on the flow. This in turn damps 
out the sinusoidal form of the boundary layers on A A  and for some finite dB, 
no negative velocities will be induced in these layers. 

In  examining the case when the walls are non-conducting, Shercliff first 
derived the exact solution for ( V + B), but found that this solution gave little 
information about the boundary layers a t  = ~fr 1 owing to the slow convergence 
of the series. Then by assuming that, in the boundary layers on 6 = Ifr I ,  

he found a self-similar solution for ( V + B) .  Thence he was able to work out the 
velocity deficiency in the boundary layer. Shercliff’s method is not applicable 
to cases other than dB = 0 and dA = 0; no other type of self-similar solution 
has yet been found. 

5. Conclusion 
Though this study is far from complete, it does indicate the need for further 

theoretical and experimental study of M H D  flows in ducts with conducting walls. 
First, it is not difficult in a mercury experiment to  raise M to values greater 
than 100, and the effects predicted by the theory should be observable. 

Secondly, the stability of the boundary layers on the walls A A  in the presence 
of excess velocity and reversed flow needs theoretical examination. The analysis 
of the steady-state duct flow problem does not depend on the value of the 
Reynolds number R or the magnetic Reynolds number R,, but the stability of 
such a flow depends on R, R,, and M .  In  most practical situations R, 4 1 
and we can ignore the Alfv6n wave motions associated with R, B 1. When 
R, 9 1 the stability analysis depends only on R and M .  Lock (1955) has analyzed 
the stability of Hartmann flow and found that in realistic cases the magnetic 
field stabilizes the flow by its effect on the equilibrium velocity profile and not 
by inhibiting the growth of small disturbances, since this is dominated by viscous 
effects. We can then make some qualitative predictions about the stability of 
the flows studied above, based on our knowledge of the stability of boundary 
layers when there is no magnetic field. 

Let us examine the stability of the boundary layers on the walls A A  in a duct 
with perfectly conducting walls perpendicular to the field and insulating walls 
parallel to the field (dA = 0, dB = 00). As M+ a, there is an increasing number of 
points of inflexion in thevelocity profile which indicates that the higher M thelower 
the Reynolds number a t  which the flow in the boundary layers becomes unstable 
(figure 3). The degree to which the magnetic field is likely to be destabilizing 
depends also on the shape of the duct. If u/b < M-+, a very thin duct with walls 
AA much shorter than walls BB, the mean velocity in the duct closely approaches 
the core velocity and most of the flow is in the core. (For u/b < M-4 most of the 
flow is in the boundary layers on AA (3 3)). Then the mean velocity in the bound- 
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ary layers on the walls AA is O ( M )  V,, and since the thickness of these boundary 
layers is O(aM-*), the Reynolds number of the boundary layer 

Rb.1. = O(aM*) @,/VY 

where v is the kinematic viscosity. Hence 

Rb.l. ~2 o(M') R, (29) 

where R is the overall Reynolds number of the flow in the duct (R  = V,a/v). 
Thus, for given R, Rbel. increases with M ;  hence the critical overall Reynolds 
number at which the boundary layer becomes unstable is reduced by increasing 
M .  Note, however, that away from the remote walls AA the flow would be very 
stable. 

Now consider an approximately square duct with a/b = O( 1). We see from 
equation (24) that in this case most of the flow is in the boundary layers on AA. 
The mean velocity in the boundary layers on AA is O ( M )  w,, where w, is the core 
velocity, and since the thickness of these boundary layers is O(aM-*), the overall 
mean velocity is given by 

w, N O[(Mw, x a2M-* + w, x ab)/ab] 21 O[M* w,a/b]. 

Hence if a/b = O[l], R 21 O[&f)av,/v] and since Rb.1. N O[M*aw,/v], 

Rb.l.* 

Thus for this type of duct for given R, does not increase with M .  Comparing 
(29) and (30) indicates that the thinner the duct the more the magnetic field 
tends to destabilize the flows in the boundary layers on AA. 

It is important to realize that the forms of the velocity profiles are functions 
of M and not R. Thus velocity overshoot and reversed flow can occur in the bound- 
ary layers on AA at arbitrarily small Reynolds number. We cannot assume, 
therefore, that these boundary layers are always unstable as M+co: they will 
probably be stable at sufficiently small Reynolds numbers, whatever the value 
of M .  

When the walls of the duct are all perfectly conducting (d, = dB = co) the 
velocity profile of the boundary layers also contains points of inflexion (figure 4) 
and hence raising M reduces the Reynolds number at which these boundary 
layers become unstable. But in this case for M 1 the velocity in the boundary 
layers on A A  is of the same order as the core velocity and since the boundary 
layer thickness is O(aM-&), 

&,I. = O(M-*)R.  

(Provided a/b < M* the shape of the duct does not matter.) Therefore in contrast 
to the former case (dA = 0;  d, = a), raising M a t  given R may first tend to de- 
stabilize the flow in the boundary layers on AA and then to stabilize it. 

The only tentative conclusion we can draw from this qualitative analysis 
is that, for flow in a rectangular duct with conducting walls, the value of the 
overall Reynolds number at which the boundary layers on walls A A  become 
unstable decreases as the Hartmann number increases. This may be contrasted 
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to the case of flow in a plane channel where it has been shown, both theoretically 
and experimentally, that the magnetic field etabilizes the flow. 

Thirdly, we have only discussed flows in ducts whose walls are either perfect 
conductors of insulators and it would be of interest to study the cases where the 
walls have finite conductivity. When all the walls are non-conducting and 
M % 1, the velocity profile in the boundary layers on the walls AA has no points 
of inflexion and the flow in such a duct is probably stabilized by the magnetic 
field. Hence it is likely that uniformly lowering the conductivity of the walls 
will tend to stabilize the flows in the boundary layers. And lastly we have not 
considered contact resistance, though it would not be difficult to include it in the 
analysis. 
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